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hen disasters (such as floods, typhoons, and 
other natural calamities) occur, dynamic 
physical systems might change structurally, and 
the science based models of the systems should 
change also. If the new behaviors exhibit 

instability, it would be imperative that the new situations be 
brought to safe conditions as quickly as possible by means of 
appropriate feedback control. In these cases, use of artificial 
intelligence in controllers that do not utilize feedback control 
would lead to further human fatalities and damages to property.  
 
Selected results from science-based models and control of 
dynamic physical systems are collected in this paper because the 
modeling and control methodology for these classes of problems 
could be implemented automatically. Commercial software 
systems are widely available for designing the corresponding 
dynamic controllers.  
 
Major types of disaster situations could be anticipated and each 
situation could be associated with a predetermined science based 
model and corresponding dynamic feedback controller. A front-
end data-based AI system could be designed to determine what 
disaster occurred. The identified situation could be compared 
with a catalogue list of predetermined disasters to decide which 
predetermined disaster situation is closest. For example, a Bi-
directional Associative Memory artificial neural network might 
be used. The predetermined corresponding dynamic feedback 
controller would be switched in automatically.  

The stabilization challenges posed by the changed behaviors of 
a cyber physical system after the occurrence of a disaster 
strongly suggest that mechanisms for science based models and 
dynamic feedback controllers be imbedded in the system 
whereby the data based artificial intelligence system would be 
used to identify and classify the disaster and the feedback 
controller would automatically adapt to it. 
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1. HISTORICAL BACKGROUND 
 
In the opening paragraph of the first chapter of the third edition 
of a widely used textbook (Russell and Norvig 2010), 
intelligence is characterized: “We call ourselves Homo sapiens 
-- man the wise -- because our intelligence is so important to us. 
For thousands of years, we have tried to understand how we 
think; that is, how a mere handful of matter can perceive, 
understand, predict, and manipulate a world far larger and more 
complicated than itself.” Next Artificial Intelligence is 
characterized:  Artificial Intelligence (AI) “attempts not just to 
understand but also to build intelligent entities … the name itself 
was coined in 1956.” (Russell and Norvig 2010).  
 
The field of AI is so vast and so extensive that it is inevitable to 
have so many definitions of what AI is. Russell and Norvig 
organized various definitions into four categories: (1) Thinking 
humanly, (2) Acting humanly, (3) Thinking rationally, and (4) 
Acting rationally. In this fourth definition category, there is an 
agent or computer agent.   
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A computer agent “is just something that acts (agent comes from 
the Latin agere, to do) … operate autonomously, perceive their 
environment, persist over a prolonged time period, adapt to 
change, and create and pursue goals. A rational agent is one that 
acts so as to achieve the best outcome or, when there is 
uncertainty, the best expected outcome … the rational-agent 
approach has two advantages over the other approaches. First, it 
is more general than the ‘laws of thought’ approach because 
correct inference is just one of several possible mechanisms for 
achieving rationality. Second, it is more amenable to scientific 
development than are approaches based on human behavior or 
human thought. The standard of rationality is mathematically 
well defined and completely general and can be ‘unpacked’ to 
generate agent designs that provably achieve it. Human behavior, 
on the other hand, is well adapted for one specific environment 
and is defined by the sum total of all the things that humans do. 
This book therefore concentrates on general principles of 
rational agents and on components for constructing them 
…achieving perfect rationality—always doing the right thing—
is not feasible in complicated environments. The computational 
demands are just too high … we will adopt the working 
hypothesis that perfect rationality is a good starting point for 
analysis. It simplifies the problem and provides the appropriate 
setting for most of the foundational material in the field… acting 
appropriately when there is not enough time to do all the 
computations one might like.” (Russell and Norvig 2010).  
 
Clearly, Russell and Norvig prefer the fourth category definition 
of AI. In their description of the historical development of AI, 
they point out that the rapid progress and achievements in AI 
during the last three decades have tended to have more science 
basis. “Recent years have seen a revolution in both the content 
and the methodology of work in artificial intelligence. It is now 
more common to build on existing theories than to propose 
brand-new ones, to base claims on rigorous theorems or hard 
experimental evidence rather than on intuition, and to show 
relevance to real-world applications rather than toy examples. 
AI was founded in part as a rebellion against the limitations of 
existing fields like control theory and statistics, but now it is 
embracing those fields. …  “Initially, the mathematical tools of 
control theory were quite different from AI, but the fields are 
coming closer together.” (Russell and Norvig 2010). 
 
In this paper we adopt the definition category that an AI machine 
acts rationally. Rationality means that rules of logic are applied 
to the extent possible, but in complex situations, application of 
logic might be infeasible at best and a simpler alternative is used.  
 
 
2. AGENTS 
 
Agents are defined in both artificial intelligence and in control 
and game theories. 
 
2.a Agents in artificial intelligence 
In AI machines, an agent is an entity that produces actions 
(through physical actuators) based on environmental 
observations (through physical sensors). In spite of the trend 
towards more science base in AI and the acceptance of agents to 
be rational, much of recent AI research employs data collected 
about an agent, combined with massive and fast computation 
and networking. Nevertheless, agents in AI are supposed to be 
rational. 
 
2.b. Agents in control and game theories 
In a complex system, even when there is only one stakeholder, 
it is often useful to have multiple controllers, each one producing 
action based on local observations. These controllers are called 
agents (Cruz and Simaan 1999, Cruz et al. 2010). When there is 

only one agent the controller is called a centralized controller. In 
systems with multiple stakeholders, each stakeholder might have 
multiple agents. Each agent belongs to only one stakeholder. In 
every case, an agent applies an action to the system based on 
local or even system-wide observation. An agent in a control 
system or a complex multi stakeholder system operating 
autonomously has the same meaning as a rational agent in 
artificial intelligence. 
 
 
3. DYNAMICS AND CONTROL OF CYBER PHYSICAL 
SYSTEMS 
 
A significant area of application and future applications of AI is 
control of physical dynamic systems. In this paper we focus 
attention to physical systems after the occurrence of disasters, 
such as electrical energy systems after a transmission line is 
disabled for a variety of reasons, potential landslides after a long 
and heavy rainfall, and impact of a water dam failure on flooding 
are three examples of dynamic systems in emergency mode that 
are mathematically modeled based on physical principles. These 
systems are dynamic in the sense that the rate of change of state 
depends on the present state and on the present action. Such 
systems are mathematically modeled by differential equations. 
There is a highly developed body of knowledge called control 
theory. For example, see some textbooks (Astrom and Murray 
2008, Ogata 2010, Perkins and Cruz 1969) and another highly 
developed body of knowledge called game theory. J. von 
Neuman and O. Morgenstern (von Neumann and Morgenstern 
1944) established the field. J. Nash (Nash 1950) wrote a 
mathematics doctoral dissertation that was the basis for a Nobel 
Prize in economics. LS Shapley (Shapley 1953), created a game 
value now known as the Shapley value, another Noble Laureate. 
RP Isaacs (Isaacs 1955) is the originator of differential games. 
YC Ho (Ho 1970) clarified the connection between control and 
differential game theory. , CI Chen and JB Cruz (Chen and Cruz 
1972) were the first to consider dynamic Stackelberg games. 
MA Simaan and JB Cruz (Simaan and Cruz 1973a, Simaan and 
Cruz 1973b) reframed dynamic Stackelberg game theory, 
providing mathematical proofs for various results and showed 
that the Stackelberg strategies do not necessarily satisfy 
Bellman’s principle of optimality. This violation of the principle 
of optimality was renamed as time inconsistency in economic 
policy (Kydland and Prescott 1977), and later Kydland and 
Prescott won the Noble prize in economics in 2004 in part on the 
basis of their paper. MA Simaan and JB Cruz (Simaan and Cruz 
1973c) extended the dynamic Stackelberg concept to many 
players. JB Cruz (Cruz 1975) introduced the dynamic 
Stackelberg concept to the economics community, and he 
extended the Stackelberg strategy to more than two levels (Cruz 
1978). T Basar and Olsder (Basar and Olsder 1998) is a 
definitive resource book on dynamic game theory., Given sensor 
measurements in real time, the control problem is to determine 
the mathematical operations on the sensor measurement to 
produce “actuation” signals as input to the physical system, to 
steer it to a desired state. There are algorithms and software 
systems to do this. If there were multiple stakeholders in the 
systems, the needed computation would be guided by game 
theory.  
 
The modeling and control of the physical system may be 
implemented through a wireless communication network 
connected to the actuator inputs and observation outputs of the 
physical system. The entire system is called a cyber-physical 
system (Rajkunar et al. 2010). When the automation can be 
accomplished with no human assistance, we have artificial 
intelligence. 
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In this section, we summarize some of the results in control 
theory for dynamic physical systems that involve science based 
modeling of the dynamic physical system, and the structure of 
the dynamic controller model, to provide a basis for 
enhancement of data-based artificial intelligence, in dealing with 
dynamic cyber physical systems. This enhancement is 
particularly appropriate after the occurrence of disasters, 
whereby the dynamics of the physical systems are altered as a 
consequence of the disasters. The new dynamics of the altered 
systems might be such that without appropriate feedback control 
the systems might be unstable causing further disasters. Direct 
application of artificial intelligence might not stabilize the 
dynamic systems. The results from control theory summarized 
in this section can be automated and artificial intelligence 
methods could be applied to the augmented dynamic models to 
further improve the operation of the systems. 
 
3.1 Second-order physical system with control, example 1 
As an illustrative example, suppose that a space satellite for 
communications just lost its motion control. In normal operation 
it points to a specific point on earth where there is a receiving 
station. Let us consider its motion along one dimension. It is 
similar to a rotating shaft whose angular position in radians is 
denoted by !", its angular velocity in radians per second by !#. 
From elementary physics, assuming that the shaft rotates on a 
frictionless support we have 
     

      (a)

 

 
where $ is the angular moment of inertia and % is the torque on 
the shaft. The angular position and the angular velocity are 
called the two state variables of the mechanical system. To 
simplify the notation assume a normalized value of $  as 1. 
Consider the torque as a control input. Another possible example 
might be the position of an optical rotating disc information 
storage, and we need to position it precisely at a specified value. 
We can find an exact torque-time profile in a short time duration 
to do this but in practice it would not work because the torque 
can not be implemented numerically exactly. The disc will keep 
rotating with no torque applied. This is an example of open-loop 
control where the input torque is a function of time and not 
dependent on the angular position or angular velocity. 
Integrating the derivative of the angular velocity equation, 
 

     (b) 
 
For specificity, suppose that x2 (0) = α2 = 2.  Consider choosing  
 
τ = β for 0 ≤ t≤,δ,      (c) 
 
τ= - β for δ ≤ t ≤ 1      (d) 
and 
% = 0		for	/ > 1.      (e) 
Thus, 
 
!#(/) = 2 + βt  for 0 ≤t  ≤ 7     (f) 
 
!#(/) = 2 + 287 − 8/		for	δ ≤ / ≤ 1    (g) 
 
!#(/) = 2 − 8(1− 27)	for	/ > 1    (h) 
 
Integrating the angular velocity equation !#(/) 
 

!"(/) − !"(0) = ∫ !#
;
< (=)>=     (i) 

 
Suppose that !"(0) = ?" = 3. 	For 0 ≤ / ≤ 7 
 
!"(/) = 3 + 2/ + 8/     (j) 
 
For	7 ≤ / ≤ 1 
 
!"(/) = 3 + ∫ [2 + 8=]>= + ∫ [2 + 287 − 8=]>=;

D
D
<   (k) 

 
!"(/) = 3 + 2/ − 87# + 287/ − E

F
8/#    (l) 

 
For t > 1, 
 
!"(/) = 5 − 8(7# − 27 + E

F
)    (m) 

 
At t = 1, 
 
!"(1) = 5 − 8(7# − 27 + E

F
)    (n) 

 
Suppose that the desired value for the angular position at t = 1 is 
!"(1) = 1. Then 
 
7# − 27 + "

#
= H

I
      (o) 

The angular velocity at t = 1 is 
 
!#(1) = 2 + 287 − 8, from	Eq. (h)		 
 
Since	we	want	to	stop	the	motion	at	t = 1, !#(1) = 0 
 
1 − 27 = #

I
      (p) 

Substituting Eq. (p) in Eq. (o), 
7# − 27 + "

#
= 2(1− 27)     (q) 

 
7# + 27 − X

#
= 0      (r) 

7 = −1 +YEZ
[
≈ 0.5811     (s) 

8 = #
"^#(^"_`"</H

= #
X^√"<

≈ −12.325    (t) 

 
From the foregoing, there is only one feasible solution for 7, 0 ≤
7 ≤ 1.  If the torque time profile can be implemented exactly, 
then the space object will stop tumbling at  time t = 1 at the 
desired specified position, and it will remain there for t > 1. 
Unfortunately, the actual hardware and software will always 
involve numerical inaccuracies. So that !#(1) ≠ 0.  Thus, 
!#(/) ≠ 0 and !"(/) ≠ 1, for	/ ≥ 1. The space object will keep 
tumbling. 
 
An AI machine that does not utilize appropriate feedback will 
surely fail.  
 
Next, suppose that we make the torque proportional to the 
negative of the angular position by using a position sensor so 
that % = e!. Substituting this in the equations for the shaft we 
have  
 

     (u) 
 
Taking the derivative of the above equation, we have 

    (v) 
 

		

dx1
dt

= x2

J
dx2
dt

= τ

		x2(t)− x2(0)= τ dξ
0

t

∫

		
dx2
dt

= kx1

		
d2x2
dt2

= k
dx1
dt

= kx2
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where k is the proportionality constant of the sensor. From 
elementary physics and differential equation theory, the 
characteristic equation is 
 

     (w) 
 
If k were chosen to be positive, the angular position would keep 
exponentially increasing. If k is chosen to be negative, the 
angular position would oscillate at a frequency that is the square 
root of - k. This is not an appropriate feedback control.  
 
Next, suppose that in addition to a sensor for the angular position 
we have a sensor for the angular velocity also, and suppose we 
construct the total torque as a linear combination of a constant 
external torque, and the outputs from the two sensors with 
proportionality constants,  
 

      (1) 
 

                                      (2)                                                 

The second order differential equation for  from Eqs. (1) and 
(2) is 
 

      (3) 
 
From elementary differential equation theory, the characteristic 
equation for Equations (1) and (2) is 
 

 
 
To guarantee stability, the two parameters in the characteristic 
equation need to have negative values. Depending on the values 
of these proportionality constants, the angular position would 
have exponentially damped time trajectories or exponentially 
damped sinusoids. Since the two proportionality constants are 
design parameters, it is clear that any characteristic root 
(complex conjugate pair) could be realized by appropriate 
choices of e" and e#. 
 
Suppose that !"(0) = 5,!#(0) = 3, !"(1) = 1.Let us choose 
	e" = −200,e# = −30.  The characteristic equation is 	f# +
30s + 200 = 0. The characteristic roots or eigenvalues are f" =
−10, f# = −20.  
 

 

 
The external constant torque in Eq. (3) is obtained from 
 

 

 
Even if there is a reasonable error in setting the values of the 
proportionality constants and all the initial conditions, the space 
object will settle to an angular position close to 1.0. This 
feedback controller will stabilize the system. 
 
In this illustrative example, there is a stabilization issue, and as 
indicated above, feedback control theory demonstrates that the 
system can be stabilized. Note that a physics-based model of the 
shaft as a second-order differential equation was introduced. 
Furthermore, sensors were introduced to measure the two state 
variables of the system. The actuator is assumed to still function. 
If the torque were to be determined as an independent forcing 
function experimentally, based on massive data of previous 
torque inputs, with no feedback control, the system might 
become useless if the torque fails to stabilize the system. This 
illustrative example shows the importance of incorporating a 
science-based model of the physical system and utilizing control 
theory to establish the infrastructure of the controller, when the 
physical system is dynamic. Thereafter, data-based AI may be 
used to refine the operation. 
 
When the order of a dynamic physical system is high, it is 
advantageous to denote the state variables as components of a 
vector and to process the multiple model equations using matrix 
algebra. For example, the two equations might be written in 
matrix-vector form as  
 

      (4) 
where 

		s2 −k =0

		
dx1
dt

= x2

		
dx2
dt

= k+k1x1 +k2x2

		x1

		
d2x1
dt2

−k2
dx1
dt

−k1x1 = k

		s
2 −k2s −k1 =0

		

x1(t)= ce−10t +be−20t +a,x2(t)= −10ce−10t −20be−20t
x1(0)=5= c +b+a, 	x2(0)=3= −10c −20b

c +b=5−a, 	c +2b= − 3
10

b= a− 5310 ,		c =
103
10 −2a

1= ce−10 +be−20 +a

1= e10(10310 −2a)+e−20(a− 5310)+a

a= 1−10.3e
−10 +5.3e−20

1+e−20 −2e−10 ≈1

b= a−5.3≈ −4.3
c =10.3−2a≈8.3
For	t ≥1
x1(t)≈1
x2(t)≈0

		

k
−k1

= a, 	or	

k = −ak1 =200[
1−10.3e−10 +5.3e−20
1+e−20 −2e−10 ]

	

dx
dt

= Ax +Bu
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  (5) 
 
 and g is a control vector. In this illustrative example g is the 
one-dimensional torque %. 
 
3.2 General nth order linear time-invariant system 
The standard notation for this class of systems is given by 
 

      (6) 
 

       (7) 

 

where !  is an n-dimensional state vector, g  is the m-
dimensional control vector, and h is the p-dimensional output 
vector. i,	j, and k are matrices with dimensions nxn, nxm, and 
pxn respectively. The components of the output vector are the 
measured quantities of the physical system. Equations (6) and 
(7) provide the science-based model of a general nth order linear 
time-invariant physical system (Ogata 2010). 
 
3.3 Full state vector available as output 
Suppose that the entire state vector could be measured so that  
 

       (8) 
If a linear feedback control vector (called linear state feedback 
control) 
 

       (9) 
 
is applied to the system, Equation (6) becomes 
 

                  (10) 
 
Without state feedback control, the characteristic roots are the 
eigenvalues of the matrix A. With state feedback the 
characteristic roots are the eigenvalues of the matrix (A + BK). 
When the system in Equation (6) is controllable, the elements of 
the mxn control matrix K can be chosen such that any specified 
set of eigenvalues of (A + BK) can be realized. Thus, this 
feedback controller can completely change the dynamics of the 
system by moving any and all eigenvalues to any desired set of 
values. A necessary and sufficient condition for the system to be 
“controllable” is that the rank of the controllability matrix 
 

                (11) 
 
is n (Kalman, Ho, and Narendra 1963). 
 
3.4 Illustrative second order physical system with full state 
feedback control, example 2 
In the second-order system of Example 1 in Section 2.2, the 
control matrix K is a two-dimensional row vector 
 

                  (12) 
 
The A and B matrices are defined in Equation (5). Thus 
 

                    (13) 
 
and the eigenvalues of 
 

 
 
are the roots of the characteristic equation given by Equation (3). 
The two control parameters can clearly be chosen to obtain any 
desired set of two eigenvalues, provided that complex 
eigenvalues must be a complex conjugate pair. The eigenvalues 
will have negative real parts (needed for stability) provided that 
the control parameters are negative numbers (negative feedback). 
 
3.5 Estimating the state vector using an observer 
Depending on the application, it might not be convenient or even 
possible to measure all n components of the state vector. Instead 
the measurement output vector is a linear combination of the 
state variables as given in Equation (7) where the dimension p 
of the output vector is less than or equal to the dimension n of 
the state vector. Under certain conditions on the matrices A and 
C, it is possible to construct a dynamic system, as part of the 
controller system such that the state of the additional dynamic 
system becomes asymptotically equal to the state of the original 
system. The asymptotic convergence of the state of the 
additional system to the state of the original system can be made 
arbitrarily fast. The new dynamic system is called a state 
observer (Luenberger 1966). The observer is modeled by the 
following vector equation: 
 

                    (14) 
 

                    (15) 
 
where !l is the n-dimensional state vector of the observer, hl is 
the output vector of the observer and it is equal to the state vector 
of the observer, Equation (14) may be rewritten in standard form 
as 
 

                   (16) 
 
where 
 

                   (17) 

                  (18) 
 
and 
 

		
x =

x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, 	A= 0 1

0 0
⎡

⎣
⎢

⎤

⎦
⎥ , 	B = 0

1
⎡

⎣
⎢

⎤

⎦
⎥

	
dx
dt

= Ax +Bu

	y =Cx

	y = x

	u= Kx

		
dx
dt

= (A+BK )x

		
Ψ = B AB ... (A)n−1B⎡

⎣⎢
⎤
⎦⎥

		
K = k1 k2

⎡
⎣⎢

⎤
⎦⎥

		
A+BK = 0 1

0 0
⎡

⎣
⎢

⎤

⎦
⎥+

0
1

⎡

⎣
⎢

⎤

⎦
⎥ k1 k2
⎡
⎣⎢

⎤
⎦⎥ =

0 1
k1 k2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

		

0 1
k1 k2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

		

dx̂
dt

= Ax̂ +Bu− K̂( y −Cx̂)= (A+ K̂C)x̂ + B −K̂⎡
⎣⎢

⎤
⎦⎥

u
y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

		 ŷ = x̂

		
dx̂
dt

= Âx̂ + B̂û

		Â= A+ K̂C

		
B̂ = B −K̂⎡

⎣⎢
⎤
⎦⎥
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                   (19) 
 
The observer input vector is a composite of vectors g and h  
 
The control input of the original dynamic system is chosen as 
 

                    (20) 
 
The original system plus the controller that contains an observer 
is of order 2n. The entire dynamic system may be written as 
 

     (21) 
 
The eigenvalues of the 2nth order system are the eigenvalues of 
the matrix 
 

 
 
To provide a better insight as to where these eigenvalues are, let 
us transform our 2n-dimensional state vector. Denote the 
difference (! − !l)	mh	n	 
 

                   (22) 
 
Let us transform the state vector in Equation (21) to 
 

                 (23) 
 
where o is the n-dimensional identity matrix and 0 is a nxn zero 
matrix. So, Equation (21) can be rewritten as 
 

                    (24) 
 
Since 
 

 
 
Equation (24) becomes 
 

                    (25) 
or 
 

             (26) 

 
The matrix 
 

 
 
is block-triangular, so that its 2n eigenvalues are the n 
eigenvalues of (i + jp) and the n eigenvalues of (i + pqk) 
 
If the elements of the observer gain matrix pq can be chosen so 
that the all eigenvalues of (i + pqk) can have negative real parts 
and the magnitudes of the real parts are large, then the time 
trajectories of the components of the vector e will exponentially 
tend to zero very quickly and that the state vector of the observer 
will tend to the state vector of the original system in Equation 
(6) very quickly. This is the case when the system is 
“observable”. A necessary and sufficient condition for the 
system to be observable is that the rank of the observability 
matrix  
 

                (27) 
 
is n, where (‘) denotes transpose of a matrix.  
 
The observer is part of the controller and the controller is an nth 

order dynamic system, Controller signals might be generated 
remotely through a wireless communication network and the 
resulting cyber physical system would be 2nth order system. 
Some of the state variables might be computable from the output 
y and so it is not necessary to estimate them. There are methods 
for obtaining reduced order observers (Ogata 2010). 
 
The complete dynamic controller can be constructed using 
Equations (14) and (20), where y is the measured (available) 
output of the system to be controlled. Alternatively, we can 
substitute Equation (20) into Equation (14) and obtain 
 

                 (28) 
 
The design parameters are the elements of the p and pq matrices. 
 
3.6 Illustrative second-order system with state observer in 
the controller, example 3 
Suppose that the output in Illustrative Example 1 is only the shaft 
angular position as measured by one sensor and no other 
measurements are available. Let us design an observer as part of 
the controller for estimating the state vector. The A and B 
matrices are given in Equations (4) and (5). The C matrix is 
given by 
 

                   (29) 
 
Denote the observer gain matrix by 
 

                    (30) 
 

		
û= u

y
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

		u= Kx̂

		
d
dt

x
x̂

⎡

⎣
⎢

⎤

⎦
⎥ =

A BK
−K̂C A+BK + K̂C

⎡

⎣
⎢

⎤

⎦
⎥ x

x̂
⎡

⎣
⎢

⎤

⎦
⎥

		
A BK

−K̂C A+BK + K̂C

⎡

⎣
⎢

⎤

⎦
⎥

		e = (x − x̂)

		
x
x̂

⎡

⎣
⎢

⎤

⎦
⎥ =

I 0
I −I

⎡

⎣
⎢

⎤

⎦
⎥

x
e

⎡

⎣
⎢

⎤

⎦
⎥

		
d
dt

x
e

⎡

⎣
⎢

⎤

⎦
⎥ =

I 0
I −I

⎡

⎣
⎢

⎤

⎦
⎥

−1
A BK

−K̂C A+BK + K̂C

⎡

⎣
⎢

⎤

⎦
⎥ I 0

I −I
⎡

⎣
⎢

⎤

⎦
⎥

x
e

⎡

⎣
⎢

⎤

⎦
⎥

		
I 0
I −I

⎡

⎣
⎢

⎤

⎦
⎥

−1

= I 0
I −I
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⎣
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⎣
⎢

⎤

⎦
⎥

A BK
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⎢

⎤

⎦
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⎡

⎣
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⎤

⎦
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e

⎡

⎣
⎢

⎤

⎦
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d
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x
e

⎡

⎣
⎢

⎤

⎦
⎥ =

A+BK −BK
0 A+ K̂C

⎡

⎣
⎢

⎤

⎦
⎥ x

e
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⎣
⎢

⎤

⎦
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A+BK −BK
0 A+ K̂C

⎡

⎣
⎢

⎤

⎦
⎥

		
Ω= C ' A'C ' ... (A')n−1C '⎡

⎣⎢
⎤
⎦⎥
'

		
dx̂
dt

= (A+BK + K̂C)x̂ − K̂y

		
C = 1 0⎡

⎣⎢
⎤
⎦⎥

		
K̂ =

k̂1
k̂2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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The controller gain matrix is given in Equation (12). From the 
general observer model of Equation (28), and using Equations 
(5), (12), (29), and (30), the general observer equation (28) 
becomes 
 

                  (31) 
 

                 (32) 
 
and the control in Equation (20) becomes 
 

                   (33) 
 
The eigenvalues of the entire fourth order system are the roots 
of 
 

                  (34) 
 
and the roots of Equation (3). By choosing both observer 
parameters as negative numbers (negative feedback), the 
observer state vector will exponentially converge to the original 
system state vector. Increasing the absolute value of es"  will 
increase the speed of convergence provided that the absolute 
value of es# is also relatively large also.  
 
The controller-observer dynamic system can be constructed 
using the model in Equations (31), (32) and (33). As stated 
earlier, we can use the output, which is equal to the first state 
variable of the system, instead of the first state variable of the 
observer. Furthermore, we can construct a first order observer. 
However, the purpose here is to indicate that the entire state can 
be estimated through an observer. 
 
3.7 Obtaining the controller matrix through optimal control 
theory 
One of the most widely used parts of optimal control theory 
pertains to regulator theory using state space representation of 
dynamic systems. The development of this theory began in the 
late 1950s (Kalman 1960a, Kalman 1964). Regulator theory 
deals with developing process mechanisms so that certain 
system variables maintain constant values or return to the 
specified constant values relatively quickly.  Much of industrial 
applications of control theory deal with regulation. The variables 
to be regulated could be physical variables such as temperature, 
pressure, voltage frequency, thickness of materials, angular 
position of space antennas, etc. Without loss of generality the 
theory is developed for zero desired values. The starting point of 
optimal control theory is the specification of a performance 
criterion of a quantity to be minimized. For example, consider 
the scalar functional 
 

                 (35) 
 
The vectors ! and g are the state and control vectors and the 
time evolution of the state is given. In the linear case the 
dynamics are given in Equation (6) t  and u  are constant 
positive definite matrices. The optimal control problem is to 
determine an optimal control g to minimize $. Intuitively, when 
the initial state at time zero is not zero, we need to find a control 
time trajectory so that the sum of the energy expended in control 

plus the quadratic error in regulation is as small as possible. The 
developed theory states that the optimal control is (Kalman 
1960a, Kalman 1964) 
 

                   (36) 
 
where v is the symmetric nxn positive definite matrix solution 
to the algebraic matrix Riccati equation  
 

                 (37) 
 
The theory guarantees the existence of a positive definite 
solution. Furthermore, the theory guarantees that all the 
eigenvalues of the matrix  

  
of the state feedback system have negative real parts, and hence 
the feedback system is stable. Commercial software is available 
for solving Equation (37). Comparing Equations (9) and (36), if 
we use 
 

                   (38) 
 
stability would be guaranteed. Thus, regardless of specific 
interest in optimal regulator theory, Equations (37) and (38) may 
be used to design K, with Q and R regarded as design parameters. 
 
3.8 Estimating the state vector through Kalman filtering 
theory 
In the theory of Kaman filters (Kalman 1960b, Kalman and 
Bucy, 1961) for continuous time, the dynamic model in 
Equation (6) is modified to include process noise 
 

                   (39) 
 
where w is noise vector that is assumed to be “white”. It has zero 
mean and a covariance matrix 
 

                 (40) 

where  is a symmetric positive definite matrix and 
 

 
 
is the Dirac delta “function” that is zero everywhere except at 
 

 
 
where it is “infinite”, and its integral is equal to one. We can 
approximate it by a very tall rectangular pulse with width △ and 
height 1 △x  and △  is arbitrarily small. The Fourier transform of 
the Dirac delta “function” is a constant. White noise has a flat 
frequency spectrum.   
 
Similarly, the output description given in Equation (7) is 
replaced by 
 

                    (41) 
where y is white measurement noise, and it has zero mean and a 
covariance matrix 
 

		
dx̂1
dt

= k̂1x̂1 + x̂2 − k̂1 y

		
dx̂2
dt

= (k1 + k̂2)x̂1 +k2x̂2 − k̂2 y

		u= k1x̂1 +k2x̂2

		s
2 − k̂1s − k̂2 =0

		J = (x 'Qx +u'Ru)dt
0

∞

∫

		u= −R−1B 'Px

		PA+ A'P −PBR
−1B 'P +Q =0

		A−BR−1B 'P

		K = −R−1B 'P

	
dx
dt

= Ax +Bu+w

		E[{w(t)w '(τ )}=Qeδ(t −τ )

	Qe

		δ(t −τ )

		t −τ =0

	y =Cx + v
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                 (42) 
 
where tz is a symmetric positive definite matrix. It is desired to 
estimate the state vector !(/) by a vector estimator denoted by 
!l(/) such that the statistical expectation 
 

                (43) 
 
is minimized. From Kalman Filtering theory (Kalman 1960b, 
Kalman and Bucy 1961) the answer is the conditional 
expectation of !(/) given the data h(/) up to time /, 
 

                  (44) 
 
The conditional expectation can be calculated from the 
following equations 
 

                 (45) 
 
where  
 

                   (46) 
 

and  is the symmetric positive definite solution of the 
algebraic matrix Riccati equation 
 

                (47) 
 
The Kalman Filtering theory guarantees the existence of a 
symmetric positive definite solution of Equation (47). 
Furthermore, the eigenvalues of (i + pqk)  are guaranteed to 
have negative real parts. 
 
The structure of the state observer discussed earlier is identical 
to the structure of the Kalman Filter. Although the Kalmar Filter 
provides the optimum estimate of the state under noisy 
conditions, the methodology for calculating the Kalman Filter 
gain matrix may be utilized for obtaining a stable dynamic 
estimator. 
 
3.9 Multi-Criteria Optimal Control Theory 
 
In realistic  applications, in addition to stabilization, there might 
be multiple attributes desired. For example cost, latency, 
environmental impact, reliability, sustainability, and safety are 
prime examples of attributes that could be translated into 
multiple criteria. Suppose that for a given controller design, 
these criteria are normalized and calculated. Suppose that 
several (finite number) tentative designs are created as final 
candidates for choosing the final design (For example for 
different choices of the matrices u and	t). A weighted sum of 
the normalized criteria for each tentative design is calculated. 
Now choose the design with the highest weighted sum. The 
weights to choose are of course subjective, but a default choice 
of weights can be incorporated if the process is completely 
automated. The final choice is Pareto optimal. Furthermore, 
there are subspaces of the weights such that the final choice 
remains the same (Cruz and Almario 2018). 
 
 

4. AUTOMATION OF FEEDBACK CONTROL OF 
CYBER PHYSICAL SYSTEMS  
 
In Section 3, we described a selection of feedback control 
technology appropriate for controlling cyber physical systems 
that can be adequately represented by science based linear 
dynamic models. Given the numerical values of elements of 
matrices i , j , k , u , t , uz , tz , the numerical values of the 
elements of the controller gain matrix p  and the numerical 
values of the elements of the Kalman Filter gain matrix pq can 
be computed automatically using commercially available 
software. Specifically, the algebraic matrix Riccati equations 
can be solved using a MATLAB Tool Box. 
 
The numerical values for various model matrices for a specific 
cyber physical system may be obtained offline before the system 
becomes operational. Hence, the feedback controller can be 
designed and installed offline. In addition, alternative sets of 
numerical values of the model matrices may be stored. For 
example, these could be small variations from the values 
obtained earlier.  The corresponding controller matrices may be 
calculated for each of the sets of model matrices. During 
operation, the controller may be switched to correspond to any 
of the stored model values.  If the system had been in operation 
for a period of time, it would be conceivable that one of the 
alternate controllers could provide a better fit. 
 
 
5. FRAMEWORK FOR UTILIZING ARTIFICIAL 
INTELLIGENCE TO ENABLE SCIENCE BASED 
MODELS AND DYNAMIC FEEDBACK CONTROLLERS 
TO ADAPT TO DISASTERS  
 
When disasters occur, dynamic physical system might undergo 
drastic changes in dynamic behavior. Perhaps the existing 
controller could not adequately control the surviving portion of 
the system. If we could have a model of the changed system, 
then perhaps we could change the controller quickly.  So, what 
might be a good course of action? 
 
A suggested framework for using science-based modeling and 
feedback control technology, and data based artificial 
intelligence is described below: 
 

(a) Develop several critical scenarios that are most likely, 
after a disaster. This is accomplished offline. For each 
scenario create a science-based model, complete with 
numerical values for the system. Create a catalogue of 
dynamic models for each possible scenario. More 
scenarios could be added to enhance the effectiveness 
of the entire process. 

(b) For each model in (a) create the associated feedback 
control as summarized in section 4. Expand the 
catalogue in (a) to include the associated feedback 
controller. 

(c) Create a data-based AI system to examine data on line, 
after the occurrence of a disaster, to identify and 
classify the disaster scenario, by comparing with the 
catalogue created in (a), to decide which 
predetermined disaster situation is closest. Suppose 
that there is an emergency event and that as a 
consequence of the event, the dynamics of the 
physical system change. In the simplest case suppose 
that the order of the system remains the same, but the 
numerical values of the elements of A, B, and C are 
changed. The numerical values of the control matrix 
gain and the observer matrix gain were calculated for 
the old values of the A, B, and C matrices of the 
dynamic system before the disastrous event occurred. 

		E{v(t)v '(τ )}= Reδ(t −τ )

		Je = E{[x(t)− x̂(t)]'[x(t)− x̂(t)]}

		x̂(t)= E{x(t)| y(t)}

		
dx̂
dt

= (A+BK +KeC)x̂ −Ke y

		Ke = −PeC 'Re−1

	Pe

		APe +PeA'−PeC 'Re
−1CPe +Qe =0
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Specific scenarios of disasters could be anticipated, 
and the new A, B, and C matrices could be 
predetermined for each disaster category. Then AI 
might be deployed to detect and identify the type of 
disaster that occurred and switch the appropriate 
controller and observer gains. For example, a Bi-
directional Associative Memory artificial neural 
network might be used (Wang eta al 1990a, Wang et 
al 1990b, Wang et al 1991, Wang et al 1993). Data-
based artificial intelligence methods such as deep 
learning (LeCun et al 2015, Schmidhuber et al 2015) 
might be utilized. Deep learning is a type of machine 
learning (Schmidhuber et al. 2015) and they are 
multilayer artificial neural networks. Artificial neural 
networks started with single layer versions in the 
1980s and 1990s; see for example (Wang et al. 1990a, 
Wang et al. 1990b, Wang et al. 1991, Wang et al. 
1993).  

 
(d) Based on the result in (c), the predetermined 

corresponding dynamic feedback controller would be 
switched in automatically. 

 
 
Developing the Science Base for Multiple Stakeholders 
 
There is a body of knowledge called game theory that pertains 
to cyber physical systems with multiple stakeholders. In 
particular, when the system is sufficiently modeled by a linear 
system, quadratic performance criteria, and for a variety of 
solution concepts there are explicit results from game theory. 
There are matrix Riccati equations to be solved but these are 
more complicated than the ones for the theory when there is only 
one stakeholder. The various controllers for the different 
stakeholders need further study for automation. As in the simpler 
control case, AI might be deployed to detect the type of disaster 
that occurred so that an appropriate predetermined set of 
controllers may be implemented after the occurrence of a 
disaster. When the dynamics of the system change, as a 
consequence of a disaster, to become unstable with no feedback 
control, it is imperative that the various stakeholder controllers 
apply appropriate feedback to avert unsafe conditions. The 
suggested framework would be the same as in the single 
stakeholder case. That is, use AI to identify and classify the 
disaster scenario, and then use an automate feedback controller 
for each stakeholder. 
 
 
6. SUMMARY AND CONCLUSIONS 
 
When disasters occur, dynamic physical systems might change 
structurally, and the science-based models of the systems should 
change also. If the remnant physical systems were unstable, it 
would be imperative that the new situations are brought to safe 
conditions as quickly as possible. If AI were to be deployed with 
no feedback control there would be further disasters.  
 
In this paper we proposed a new framework for utilizing data 
based artificial intelligence to enable science-based models and 
dynamic feedback controllers to adapt to disasters.  
 
The framework includes the development of several critical 
scenarios that are most likely, after a disaster. This is 
accomplished offline. For each scenario a science-based model 
is to be created, complete with numerical values for the system. 
A catalogue of dynamic models for each possible scenario is to 
be created. More scenarios could be added to enhance the 
effectiveness of the entire process. 
 

Proposed is creation of a data-based AI system to examine data 
on line, after the occurrence of a disaster, to identify and classify 
the disaster scenario, by comparing with a catalogue previously 
created, to decide which predetermined disaster situation is 
closest. 
 
Some results from control theory that could be automated were 
collected. Starting from the development of science based 
dynamic models of linear cyber physical systems, to the 
development of the controller structure including estimation of 
the system state vector through a state observer or Kalman filter, 
explicit procedures were summarized for computing parameters 
of the dynamic controller. There are commercial software 
systems for these computations. Thus, the construction of these 
dynamic controllers can be automated. 
 
The last stage in this framework is to switch in the feedback 
control associated with the post-disaster model identified by the 
AI classifier.   
 
There is great merit in imbedding control theory, and game 
theory, into the AI framework, whenever dynamic cyber 
physical systems are involved. 
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